This servo is a generic version of the Joinmax Digital servo and is the same one used in the BCM Gripper. The unique arm on the output shaft allows for mounting options not available with traditional servos. The rotation range is 10° to 170° and the servo can operate from 4.5 to 6 V.
We carry a wide variety of servos, from ultra-high-torque monster servos with up to 1600 oz-in of torque, to sub-micro servos weighing less than 3 g (0.11 oz), to continuous rotation servos that are great actuators for beginner robotics projects, and all of our servos are compatible with our servo controllers.
Whatever your application, we probably have a servo for it! Our parametric search of our assortment of servos can help you find the servo you're looking for.
Note: Servos must be connected to a servo controller, RC receiver, or microcontroller to be used. Except where specifically noted otherwise, our servos have female JR connectors, which are compatible with male JR connectors and male Futaba connectors as well as 1-3 0.1" male header pins.
Dimensions
Size: |
52.3 x 20.0 x 33.5 mm |
Weight: |
31 g |
General specifications
Digital?: |
N |
Speed @ 4.8V: |
0.28 sec/60° |
Stall torque @ 4.8V: |
2.3 kg-cm |
Lead length: |
250 mm |
Hardware included?: |
N
|
FAQs
1. What are the three wires coming out of my servo?
Most standard radio control servos (and all RC servos we sell) have three wires, each a different color. Usually, they are either black, red, and white, or they are brown, red, and orange/yellow:
- brown or black = ground (GND, battery negative terminal)
- red = servo power (Vservo, battery positive terminal)
- orange, yellow, white, or blue = servo control signal line
Please check the specs for your servo to determine the proper power supply voltage, and please take care to plug the servo into your device in the proper orientation (plugging it in backwards could break the servo or your device).
2. How many degrees can this servo turn? Why do you not list it with the other specifications?
We do not specify the range of rotation of our servos because this information is not generally available from servo manufacturers. RC servos are usually intended for controlling things like the steering mechanism in an RC car or the flaps on an RC plane. Manufacturers make sure that the range is enough for these typical applications, but they do not guarantee performance over a wider range.
This means most RC servos will rotate about 90° using the standard 1-2 ms pulse range used by most RC transmitters. However, if you are using a controller capable of sending a wider range of pulses, many servos can rotate through almost 180°.
You can find a servo's limits if you use a servo controller that can send pulses outside of the standard range (such as our Maestro servo controllers). To find the limits, use the lowest possible supply voltage at which the servo moves, and gradually increase or decrease the pulse width until the servo does not move any further or you hear the servo straining. Once the limit is reached, immediately move away from it to avoid damaging the servo, and configure your controller to never go past the limit.
You might be wondering why we do not just follow the above steps for all the servos we carry and list a specification for degrees of rotation. Unfortunately, since servo manufacturers do not specify the range of rotation, it might change from one manufacturing run to the next. They will not inform us about changes that are not specified, and we have no way of knowing if or when they might change their manufacturing process.
For more information about servos and how to control them, we recommend the series of blog posts on servos starting with: Introduction to servos.
No recommended products at the moment.
No recommended products at the moment.